Improving Bridging Reference Resolution using Continuous Essentiality from Crowdsourcing

Nobuhiro Ueda and Sadao Kurohashi, Kyoto University, Japan

October 16th, CRAC2022

- Bridging reference resolution is a reference resolution task of finding non-identical antecedents
- **Challenge**: Continuous strength of bridging relations, which is not well-represented in existing datasets
- Method: We propose a crowdsourcing-based annotation method to obtain continuous labels
- Result: Adding our constructed dataset improved the resolution
 performance

Background: Current status of Japanese Reference Resolution

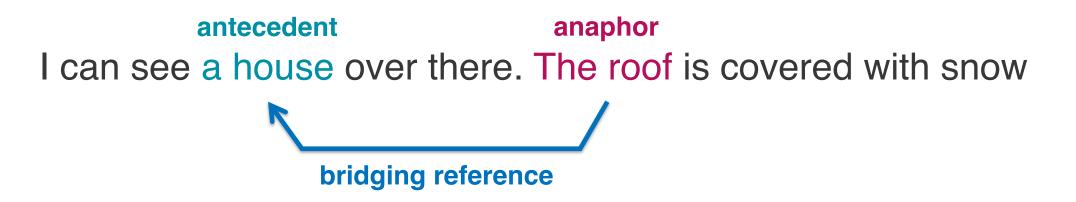
- Train and evaluate models based on labels annotated by experts
- The performance has greatly improved using large pre-trained models such as BERT[devlin+19]

F1 of Japanese Reference Resolutions

• However, the performance of bridging reference resolution is still low

Introduction: Bridging Reference

- Reference between non-identical nouns
- Especially the case where an anaphor is semantically insufficient by itself, and its antecedent complements its meaning
- Essentiality: the importance of the complemented meaning for the anaphor



Existing Japanese Corpora for Bridging Resolution

• The size (We focus on this dataset due to its diversity # of bridging anaphors			
KWDLC [Hangyo+12] (Web domain)	5,124	16,038	13,496
Kyoto Corpus [калоз] (News domain)	1,909	15,872	24,139

• Bridging-related labels defined in KWDLC

label	example	
essential	the capital of the US	
ambiguous	glasses of mine	essentiality
optional	A 50-cent candy	

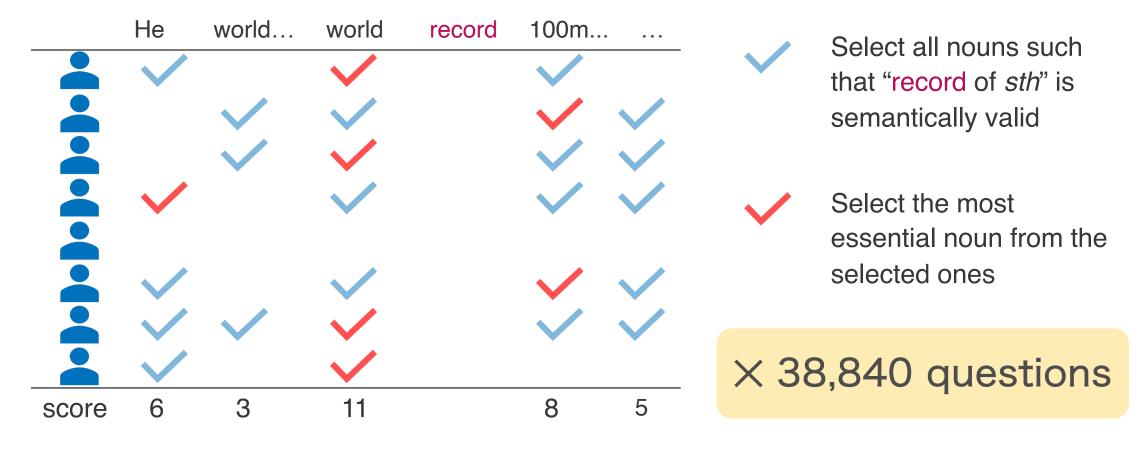
A Challenge of Bridging Reference Resolution

There is a gap between the phenomenon of bridging reference and the annotations

The essentiality has a <u>continuous</u> distribution He won the world swimming championships with a world record in 100m breaststroke. The existing corpora have only a few discrete labels He won the world swimming championships with a world record in 100m breaststroke. essential ambiguous

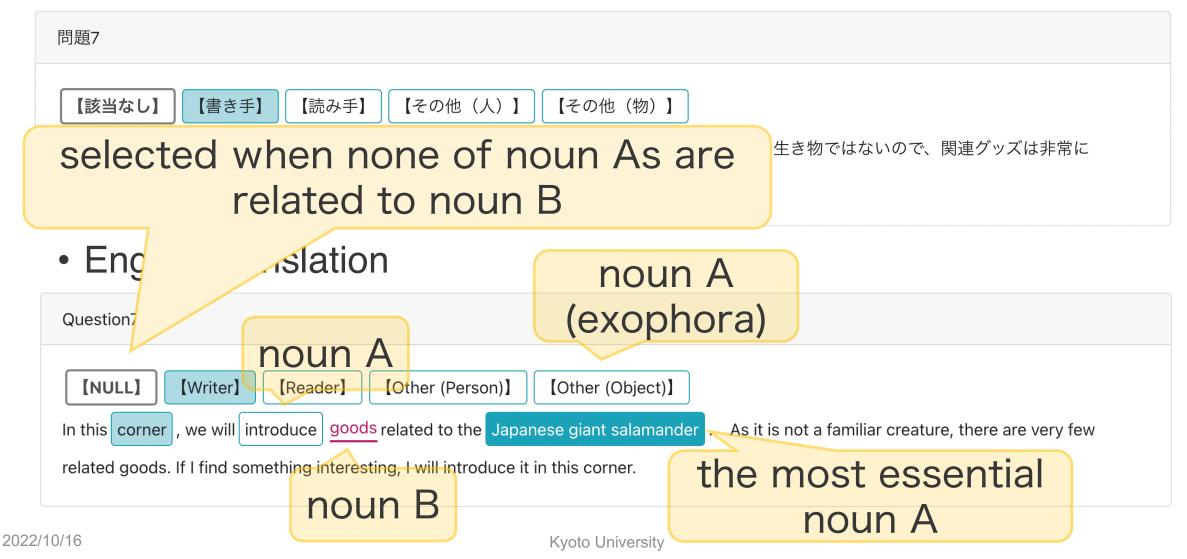
Proposed Method: Utilizing Crowdsourcing

• We utilize crowdsourcing to obtain multiple labels for each example, and we can obtain more fine-grained annotations



Crowdsourcing Interface

• Original (Japanese)



8

Dataset Construction and Results

- We re-annotated a portion of KWDLC (**Expert** hereafter) and constructed a dataset called **Crowd** Corpus statistics
- Krippendorff's alpha: 0.28
- We define **essentiality score** for noun A

 $\begin{cases} n(A) \times 2 & \text{if noun A is [NULL],} \\ n(A) + N(A) & \text{otherwise,} \end{cases}$

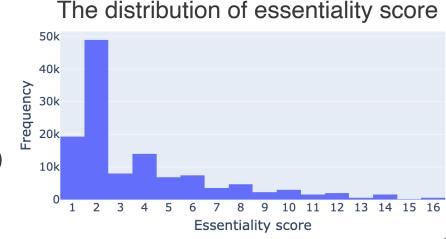
n(A) = (# of workers who selected noun A)N(A) = (# of workers who selected noun A as the most essential)

 # of docs
 # of bridging anaphors

 Expert
 5,124
 13,496

 Crowd
 3,933
 *25,217

*This is calculated for anaphors that at least half of the workers considered to be bridging

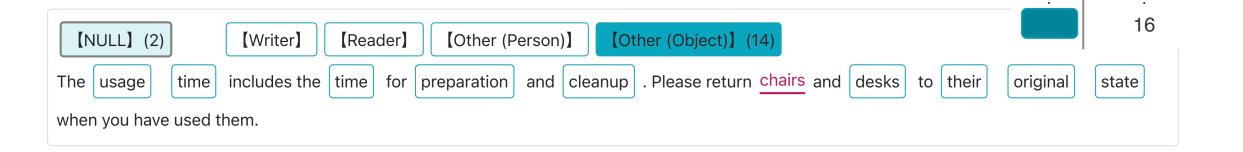


Constructed Dataset: Comparison to Expert

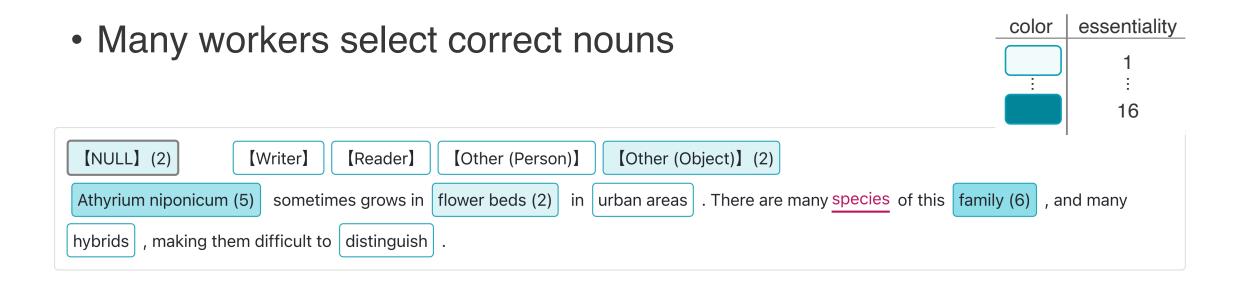
• We assume noun As with *essential* or *ambiguous* relation in Expert as ground truth and evaluate Crowd

	Precision	Recall	F1	Accuracy
Endophora	29.9	71.6	42.2	58.4
Exophora	6.7	48.9	11.8	52.9

 The low precision of exophora is reasonable as in most cases, an entity is owned by someone or is part of something <u>color</u> essentiality



Other Collected Examples



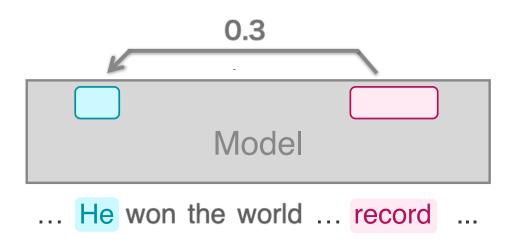
• The essentiality is represented as the number of votes

Evaluation with Bridging Reference Resolution

We compare the existing dataset (Expert) and constructed dataset (Crowd) in terms of the score on bridging reference resolution

- Training set
 - Crowd (2,712 docs)
 - Expert (3,912 docs)
 - Crowd + Expert (6,633 docs)
- Evaluation set
 - Crowd (700 docs)
 - Expert (700 docs)

- Resolution model
 - learns to predict (normalized) essentiality score for each noun pair

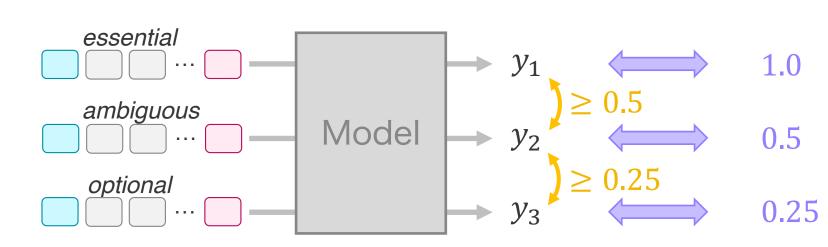


Training Objective

- For comparison, we convert the relations in Crowd and Expert into a value between 0 and 1
 - Crowd: normalize essentiality score
 - Expert: define a mapping table for conversion

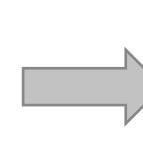
label	value
essential	1.0
ambiguous	0.5
optional	0.25

 We use mean squared error (MSE) loss or margin ranking (MR) loss



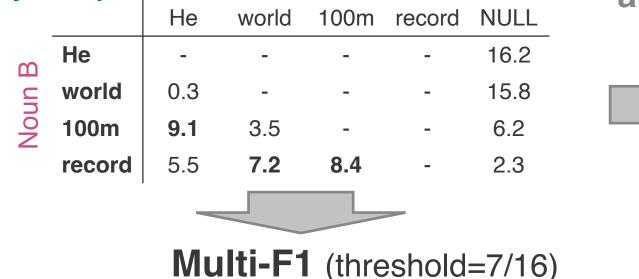
Evaluation Metrics (when evaluating on Crowd)

		He	world	100m	record	NULL
	Не	-	-	-	-	16
B L	world	0	-	-	-	16
lou	100m	4	0	-	-	12
2	record	5	7	8	-	2



Не	NULL
world	NULL
100m	NULL
record	100m

System prediction



argmax

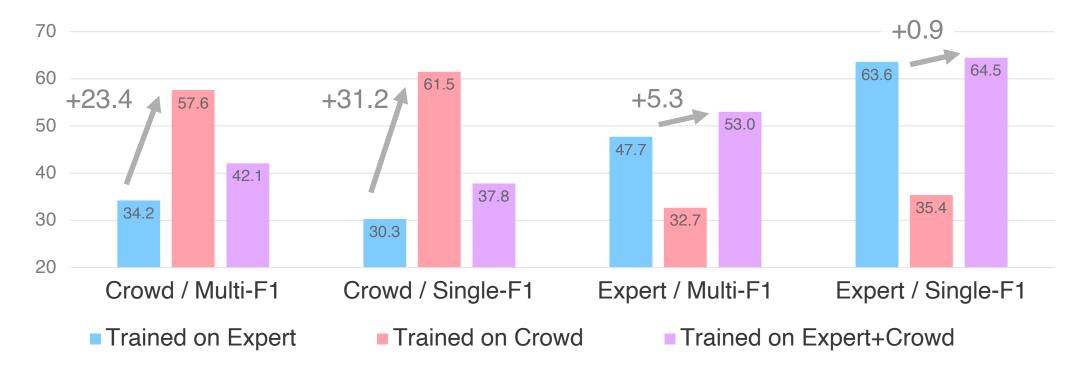


e	NULL
orld	NULL
00m	He
cord	100m

Experimental Results

In all evaluation settings, adding Crowd improves F1 value

Multi-F1 and Single-F1 evaluated on Crowd and Expert



Conclusion and future works

- To obtain continuous annotations for bridging reference resolution, we proposed to utilize crowdsourcing
- Experiments showed that collected data helps solve bridging resolution
- Future works
 - Collect more examples for further improvement of bridging resolution
 - Consider an effective way to combine Crowd and Expert

Acknowledgments

This work was supported by RIKEN